RC Holicopter Overview

A Radio-controlled helicopter (also RC helicopter) is model aircraft which is distinct from a RC airplane because of the differences in construction, aerodynamics, and flight training. Several basic designs of RC helicopters exist, of which some (such as those with collective pitch control) are more maneuverable than others. The more maneuverable designs are often harder to fly, but benefit from greater aerobatic capabilities.

Flight controls allow pilots to control the collective (or throttle, on fixed pitch helicopters), the cyclic controls (pitch and roll), and the tail rotor (yaw). Controlling these in unison enables the helicopter to perform the same maneuvers as full-sized helicopters, such as hovering and backwards flight, and many that full-sized helicopters cannot, such as inverted flight (where collective pitch control provides negative blade pitch to hold heli up inverted, and pitch/yaw controls must be reversed by pilot).

The various helicopter controls are effected by means of small servo motors, commonly known as servos. A solid-state gyroscope sensor is typically used on the tail rotor (yaw) control to counter wind- and torque-reaction-induced tail movement. Most newer helicopters have gyro-stabilization on the other 2 axes of rotation (pitch and roll) as well. Such 3-axis gyro is typically called a flybarless controller, so-called because it eliminates the need for a mechanical flybar.

The engines typically used to be methanol-powered two-stroke motors, but electric brushless motors combined with a high-performance lithium polymer battery (LiPo) are now more common and provide improved efficiency, performance, and lifespan compared to brushed motors, while decreasing prices bring them within reach of hobbyists. Gasoline and jet turbine engines are also used.

Just like full sized helicopters, model helicopter rotors turn at high speeds and can cause severe injuries. Several deaths have occurred as recently as 2013.

Common power sources of remote control helicopters are glow fuel (also called nitro fuel, nitromethane-methanol), electric batteries, gasoline (petrol) and turbine engines. For the first 40 years, glow fuel helicopters were the most common type produced. However, in the last 10 years, electric powered helicopters have matured to a point where power and flight times have equaled glow fuel helicopters.

There have been two main types of systems to control the main rotors, mechanical mixing and cyclic/collective pitch mixing (CCPM). Most earlier helicopters used mechanical mixing. Today, nearly all R/C helicopter use CCPM.

Practical electric helicopters are a recent development but have rapidly developed and become more common, overtaking glow fuel helicopters in common use. Turbine helicopters are also increasing in popularity, although the high cost puts them out of reach of most people.

Glow fuel (nitro fuel)

Glow fuel, or nitro fuel helicopters (not to be confused with gas, or gasoline powered helicopters) have been made in several sizes over the years. These are referred to as the "class" of the helicopter. They include 1/2A class, 15 class, 30 class, 50 class, 60 class and 90 class. These class numbers originated from the size of engine (engine displacement measured in cubic inches) used in the different models. For example, a helicopter with a 0.30 cu in (4.9 cm3) engine is a 30 class and a helicopter with a 0.90 cu in (14.7 cm3) engine was referred to as a 90 class helicopter. The bigger and more powerful the engine, the larger the main rotor blade that it can turn and hence the bigger the aircraft overall. Typical flight time for nitro helicopters is 7–15 minutes depending on the engine size and tuning. The maximum height of operation for RC helicopters, be it glow fuel, gasoline, turbine or electric, is effectively limited to the height at which the model is still visible. Most quality radio control systems have a range of over a mile, when the model would be long out of sight.


Electric

The 252 km/h fast electric helicopter TDR
Two small electric helicopters emerged in the mid-1990s. These were the Kalt Whisper and the Kyosho EP Concept, flying on 7–8 × 1.2 Ah NiCad batteries with brushed motors. However, the 540-sized brushed-motors were on the limit of current draw, often 20–25 amps on the more powerful motors, hence brush and commutator problems were common.

Recent advancements in battery technology are making electric flying more feasible in terms of flying time. Lithium polymer (LiPo) batteries are able to provide the high current required for high performance aerobatics while still remaining very light. Typical flight times are 4–12 minutes depending on the flying style and battery capacity.

In the past electric helicopters were used mainly indoors due to the small size and lack of fumes. Larger electric helicopters suitable for outdoor flight and advanced aerobatics have become a reality over the last few years and have become very popular. Their quietness has made them very popular for flying sites close to residential areas and in places such as Germany where there are strict noise restrictions. Nitro helicopters have also been converted to electric power by commercial and homemade kits.

The smallest remote-controlled production model helicopter made (Guinness World Records 2006) is the Picooz Extreme MX-1 sold at many toy stores (although this is infrared controlled, not radio), electronics stores and internet stores, costing about $30 (£28). The next smallest is the standard Picooz helicopter.

Several models are in contention for the title of the smallest non-production remote-controlled helicopter, including the Pixelito family of micro helicopters, the Proxflyer family, and the Micro flying robot.


Coaxial

A Lama V3 model helicopter, with a simplified coaxial rotor system.
A recent innovation is that of coaxial electric helicopters. The system's simple direction control and freedom from torque induced yaw have, in recent years, made it a good candidate on small models for beginner and/or indoor use. Models of this type, as in the case of a full-scale helicopter, eliminate rotational torque and can have extremely quick control response, both of which are very pronounced in a CCPM model. Most cheaper models do not have a swashplate, but instead use a third rotor on the tail to provide pitch control. These helicopters have no roll control and have limited mobility.

While a coaxial model is very stable and can be flown indoors even in tight quarters, such a helicopter has limited forward speed, especially outdoors. Most models are fixed-pitch, i.e. the collective pitch of the blades cannot be controlled, plus the cyclic control is only applied to the lower rotor. Compensating for even the slightest breeze causes the model to climb rather than to fly forward even with full application of cyclic. More advanced coaxial constructions with two swash plates and/or pitch control (common for full scale coaxial helicopters like Kamovs) have been realized as models in individual projects but have not seen the mass market as of 2014.


Multirotor model helicopters


Hexacopter


Quadcopter
More recently, multirotor designs have become popular in both the RC hobby and unmanned aerial vehicle (UAV) research. These vehicles use an electronic control system and electronic sensors to stabilize the aircraft. Multirotors are generally more affordable, easier to construct, and simpler to operate than RC helicopters. This made multirotor aircraft an appealing platform for amateur model aircraft projects and aerial photography.

No comments:

Post a Comment